Computational Infrastructure

Sean Wilkinson
University of Alabama at Birmingham

Problem

You know Big Data need Big Computers, but now you are asking yourself questions such as

How do I get one?
How do I use it?
How can I afford it?

How do I get one?

- Buy a "real" workstation
 - Pay up front
 - Full control over every nitty, gritty detail
 - Full responsibility if the machine dies
- Lease "cloud" resources
 - Pay as you go
 - Significantly less control (sometimes zero)
 - Guaranteed performance and availability

Should I use the cloud?

Probably!

Unless you are using your workstation at full capacity for more than 2 hours a day, you will save money by using the cloud.

Thus, we'll focus on cloud computing ©

Which cloud should I use?

The major players right now are

- Amazon
- Google
- Microsoft
- OpenStack (Dell, HP, IBM, Rackspace, and others)

Currently, I recommend Amazon, but keep an eye on OpenStack because CERN is behind it.

How do I use it?

- 1. Get an Amazon account.
- 2. Log in to https://console.aws.amazon.com/.
- 3. Select the service you want to use ©

Relevant Services

- Elastic Compute Cloud (EC2)
 - Create and destroy virtual machines instantly
 - Customize machines if you like that sort of thing, or use images from Amazon Marketplace if you don't (https://aws.amazon.com/marketplace/)
 - Pay only for what you use
 - Buy a Top500 machine for twenty minutes, then throw it away – EC2 makes HPC disposable! (http://goo.gl/KqqCa)

Relevant Services

- Elastic Block Store (EBS)
 - Create and destroy virtual hard drives instantly
 - Configurable from 1 gigabyte to 1 terabyte
 - EC2 instances can mount these as hard drives, but they perform more like network drives
 - Pay for what you use, plus the size of the provisioned storage (you pay until you destroy it)
 - Tricky to upload data to it directly

Relevant Services

- Simple Storage Service (S3)
 - Create "buckets" for files and folders with full access control and web publishing
 - Files can be up to 5 terabytes each, and there is no limit to the number of objects you can store.
 - 99.99999999% durability over a given year!
 - Everything can be set up using only a web browser, but you can also automate using Amazon's SDK (http://aws.amazon.com/tools/)

Relevant Services

- Glacier
 - Create "vaults" for immutable "archives" with full access control and web publishing
 - Archives are often TAR or ZIP files to save money
 - Archives can be up to 40 terabytes each, and there is no limit to the number of archives you can store within a vault.
 - Think of this as the cloud version of a tape drive.
 - Same durability, but really slow retrieval vs. S3

Data Transfer

- You have three options:
 - For "small" files and fast networks, you can upload data directly from your web browser or use Amazon's SDK to upload to S3 or Glacier.
 - The SDK's Multipart Upload API can be used for parallel and streaming uploads to S3 and Glacier.
 - Physically mail your hard drive(s) to Amazon to upload to EBS, S3, or Glacier. Avoid this if you can! (http://aws.amazon.com/importexport/)

Proposed Solution

- 1. Upload data to S3 using the Multipart Upload API in Amazon's SDK.
- 2. Create a cc2.8xlarge instance on EC2 using an image that has Xiuxia Du's ADAP installed.
- 3. Process data on EC2 and save results to S3.
- 4. Archive data and/or results into Glacier.
- Destroy unnecessary EC2 and S3 resources.(Note: I haven't actually tested this yet.)

Other clouds

- Google's offerings may outperform Amazon's, but you have to apply for an account, and they still haven't replied to me after 2 months ...
- Microsoft Azure is strong but relatively new.
- Joyent's new "Manta" may change the game!
- The OpenStack frees your software from vendor lock-in. CERN and Rackspace recently partnered to power computations for the LHC.

Conflict of Interest Disclosure

I own a small amount of stock in Rackspace.

